jueves, 5 de junio de 2014

HISTORIA DE LA QUIMICA ORGANICA
La química orgánica se constituyó como disciplina en los años treinta. El desarrollo de nuevos métodos de análisis de las sustancias de origen animal y vegetal, basados en el empleo de disolventes como el éter o el alcohol, permitió el aislamiento de un gran número de sustancias orgánicas que recibieron el nombre de "principios inmediatos". La aparición de la química orgánica se asocia a menudo al descubrimiento, en 1828, por el químico alemán Friedrich Wöhler, de que la sustancia inorgánica cianato de amonio podía convertirse en urea, una sustancia orgánica que se encuentra en la orina de muchos animales. Antes de este descubrimiento, los químicos creían que para sintetizar sustancias orgánicas, era necesaria la intervención de lo que llamaban ‘la fuerza vital’, es decir, los organismos vivos. El experimento de Wöhler rompió la barrera entre sustancias orgánicas e inorgánicas. Los químicos modernos consideran compuestos orgánicos a aquellos que contienen carbono e hidrógeno, y otros elementos (que pueden ser uno o más), siendo los más comunes: oxígeno, nitrógeno, azufre y los halógenos.
La diferencia entre la química orgánica y la química biológica es que en la química biológica las moléculas de ADN tienen una historia y, por ende, en su estructura nos hablan de su historia, del pasado en el que se han constituido, mientras que una molécula orgánica, creada hoy, es sólo testigo de su presente, sin pasado y sin evolución histórica.




CARACTERISTICAS FISICAS Y QUIMICAS DEL CARBONO
 
El carbono es un elemento químico de número atómico 6 y símbolo C. Es sólido a temperatura ambiente. Dependiendo de las condiciones de formación, puede encontrarse en la naturaleza en distintas formas alotrópicas, carbono amorfo y cristalino en forma de grafito o diamante. Es el pilar básico de la química orgánica; se conocen cerca de 10 millones de compuestos de carbono, y forma parte de todos los seres vivos conocidos. 
 
 Propiedades físicas  
 
Estado de la materia Sólido (no magnético)
Punto de fusión 3823 K (diamante), 3800 K (grafito)
Punto de ebullición 5100 K (grafito) 
 Entalpía de vaporización 711 kJ/mol (grafito; sublima)
Entalpía de fusión 105 kJ/mol (grafito) (sublima)
Presión de vapor _ Pa
Velocidad del sonido 18.350 m/s (diamante)

      
 Propiedades químicas:
Número atómico 6
Valencia 2,+4,-4
Estado de oxidación +4 

Electronegatividad 2,5
Radio covalente (Å) 0,77
Radio iónico (Å) 0,15
Radio atómico (Å) 0,914
Configuración electrónica 1s22s22p2
Primer potencial de ionización (eV) 11,34
Masa atómica (g/mol) 12,01115
Densidad (g/ml) 2,26 
 
 
 
 
 
 
 El carbono es único en la química porque forma un número de compuestos mayor que la suma total de todos los otros elementos combinados. Con mucho, el grupo más grande de estos compuestos es el constituido por carbono e hidrogeno. Se estima que se conoce un mínimo de 1.000.000 de compuestos orgánicos y este número crece rápidamente cada año. Aunque la clasificación no es rigurosa, el carbono forma otra serie de compuestos considerados como inorgánicos, en un número mucho menor al de los orgánicos.
El carbono elemental existe en dos formas alotrópicas cristalinas bien definidas: diamante y grafito. Otras formas con poca cristalinidad son carbón vegetal, coque y negro de humo. El carbono químicamente puro se prepara por descomposición térmica del azúcar (sacarosa) en ausencia de aire. Las propiedades físicas y químicas del carbono dependen de la estructura cristalina del elemento. La densidad fluctúa entre 2.25 g/cm³ (1.30 onzas/in³) para el grafito y 3.51 g/cm³ (2.03 onzas/in³) para el diamante. El punto de fusión del grafito es de 3500ºC (6332ºF) y el de ebullición extrapolado es de 4830ºC (8726ºF). El carbono elemental es una sustancia inerte, insoluble en agua, ácidos y bases diluidos, así como disolventes orgánicos. A temperaturas elevadas se combina con el oxígeno para formar monóxido o dióxido de carbono. Con agentes oxidantes calientes, como ácido nítrico y nitrato de potasio, se obtiene ácido melítico C6(CO2H)6. De los halógenos sólo


ESTRUCTURA INTERNA DEL CARBONO

 Estructura del carbono
El comportamiento del carbono en millones de compuestos corresponde a cuatro electrones desapareados, sin que ninguno de ellos tenga preferencia o mayor capacidad de reacción que los otros tres. Hasta la fecha la única forma que se ha encontrado para explicar este comportamiento es por medio de la teoría de la hibridación. Recordemos que hibridar significa mezclar. Si se mezcla el orbital 2s con los tres orbitales 2p, se tendrá cuatro orbitales híbridos, 2sp3, que tienen exactamente la misma energía y por tanto los electrones colocados en dichos orbitales tendrán la misma capacidad de reacción, como ocurre en todos los compuestos con enlace covalente sencillo. Enlaces carbono-carbono.
 De esta forma existe la hibridación SF3 (que forma cuatro enlaces sencillos llamados Sigma ð), la hibridación SP2 (que forma un enlace doble llamado y otros dos enlaces sencillos) y la hibridación SP (que forma un enlace triple y un sencillo).
 Los enlaces sencillos son:
 • Muy fuertes. 
 • Se llevan a cabo entre 2 híbridos o un híbrido y un halógeno o un hidrógeno. 
• No pueden rotar. Los enlaces dobles son:
 • Fáciles de romper. 
• Se forman solo entre orbitales puros. 
• Pueden rotar fácilmente.
 El carbono es un elemento muy importante, ya que puede crear moléculas muy complejas, con gran cantidad de átomos. Esto es debido a su estructura atómica y las propiedades químicas que esta estructura le proporciona. Los átomos del carbono ocupan los orbitales energéticos s y p. El Nivel 1s, con tiene dos átomos, y está saturado, por haber alcanzado su número máximo de átomos. En su nivel sp, (recordemos que el siguiente nivel, sp, tiene un número de saturación de 8 electrones) solamente tiene 4 electrones. Por la tendencia de los elementos químicos a formar enlaces estables, y por esta especial característica del carbono, estos átomos tienen la característica de ceder o admitir los 4 electrones, para estabilizar sus órbitas, lo que le permite actuar con las valencias +4 y -4. Los átomos de valencia, independientemente de su subnivel, tienen la misma capacidad de reacción; sin embargo, según el subnivel energético en que se realicen los enlaces, por efectos de la hibridación (combinación de los orbitales s con los orbitales p, que nos dan cuatro orbitales 2sp [2sp, 2sp1, 2sp2, 2sp3] cada uno disponible para ceder o recibir un electrón) pueden crear diferentes enlaces estructurales entre átomos de carbono, que puede darse en forma natural o ser creados en un laboratorio.




Clases De Carbono

I.-Cristalinos: 
 

I.1- Grafito: está constituido por láminas donde los átonos de carbono tienen disposición hexagonal y permite conducir la electricidad debido a su hibridaciónsp2.

I.2- Diamante: su estructura tetraédrica y es la sustancia de mayor dureza debido a su hibridación sp3.

II.-Amorfos:

II.1- Naturales: son carbonos impuros que se producen por la descomposición de la materia orgánica por cientos de miles de años, proceso también llamado petrificación.

Turba: Es un material orgánico compacto, de color pardo oscuro y rico en carbono. 


Lignito: es un carbón mineral que se forma por compresión de la turba, convirtiéndose en una sustancia desmenuzable en la que aún se pueden reconocer algunas estructuras vegetales. Es de color negro o pardo y frecuentemente presenta una textura similar a la de la madera de la que procede.

Hulla: es una roca sedimentaria orgánica, un tipo de carbón mineral que contiene entre un 45 y un 85% de carbono. Esdura y quebradiza, estratificada, de color negro y brillo mate o graso. Se formó mediante la compresión del lignito.

Antracita: es el carbón mineral de más alto rango y el que presenta mayor contenido en carbono, hasta un 95%. Es negro, brillante y muy duro, con irisaciones y sonoro por percusión.

II.2- Artificiales: Son los tipos de carbono de piedra que corresponde a cada edad y inconsecuencia estado de descomposición.

Carbón Coke: es un combustible obtenido de la destilación de la hulla calentada a temperaturas muy altas en hornos cerrados y a la cual añaden calcita para mejorar su combustión.


Carbón Animal: es aquel obtenido mediante la destilación seca o combustión incompleta en ausencia de aire, de huesos de animales sin grasa.

Carbón de Retorta: Es el carbón que queda incrustado en las paredes de las retortas de material refractario donde se realiza la destilación de la hulla; es un carbón muy duro conductor del calor y la electricidad